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Land use regression (LUR) has emerged as an effective and economical means of estimating air pollution
exposures for epidemiological studies. To date, no systematic method has been developed for optimizing the
variable selection process. Traditionally, a limited number of buffer distances assumed having the highest
correlations with measured pollutant concentrations are used in the manual stepwise selection process or a
model transferred from another urban area.
In this paper we propose a novel and systematic way of modeling long-term average air pollutant
concentrations through “A Distance Decay REgression Selection Strategy” (ADDRESS). The selection process
includes multiple steps and, at each step, a full spectrum of correlation coefficients and buffer distance decay
curves are used to select a spatial covariate of the highest correlation (compared to other variables) at its
optimized buffer distance. At the first step, the series of distance decay curves is constructed using the
measured concentrations against the chosen spatial covariates. A variable with the highest correlation to
pollutant levels at its optimized buffer distance is chosen as the first predictor of the LUR model from all the
distance decay curves. Starting from the second step, the prediction residuals are used to construct new
series of distance decay curves and the variable of the highest correlation at its optimized buffer distance is
chosen to be added to the model. This process continues until a variable being added does not contribute
significantly (pN0.10) to the model performance. The distance decay curve yields a visualization of change
and trend of correlation between the spatial covariates and air pollution concentrations or their prediction
residuals, providing a transparent and efficient means of selecting optimized buffer distances. Empirical
comparisons suggested that the ADDRESS method produced better results than a manual stepwise selection
process of limited buffer distances. The method also enables researchers to understand the likely scale of
variables that influence pollution levels, which has potentially important ramifications for planning and
epidemiological studies.

Published by Elsevier B.V.

1. Introduction

Recent studies have shown that the spatial variability of selected
air pollutants within urban areas is greater than typically recognized
and is associated with previously unaccounted for variability in health
impacts (Hoek et al., 2002; Gilbert et al., 2005; Finkelstein and Jerrett,
2007; Miller et al., 2007). The development of models to assess air
pollution exposures within cities for assignment to subjects in health
studies has therefore been identified as a research priority (Brunek-
reef and Holgate, 2002; Brauer et al., 2003; Moore et al., 2007). These
exposure assessment methods include proximity-based assessments,
statistical interpolation, land use regression (LUR) models, new uses
of line dispersionmodels, integrated emission-meteorological models,
and hybrid models (Jerrett et al., 2005). While surrogate measures,
such as distance to roads, have been related to large health effects
(Hoek et al., 2002), these may misclassify exposure because they are

not directly estimated from monitored data. Potential alternatives to
surrogate measures arise from geographic and dispersion exposure
methods. These methods utilize geographic information systems
(GIS) to combine available geographic data with short-term monitor-
ing information to develop exposure models capable of identifying
small-area variations in pollution. Results from these models can then
be overlaid on geo-referenced health data to assign exposure to
individuals at their place of residence, work, or some combination of
both. Among the assessment methods, LUR is a promising approach
that seeks predicting pollution concentrations at a given site based on
surrounding land use, traffic, physical geography and population
characteristics. The main strength of LUR is the empirical structure
(e.g., selection of optimized buffer size) of the regressionmapping and
its relatively simple inputs and low cost (as compared with dispersion
modeling, for example; Jerrett et al., 2005).

LURwas first introduced in the SAVIAH (Small Area Variations In Air
quality and Health) study (Briggs et al., 1997) and has been used
extensively for exposure analysis and environmental health research
(Briggs et al., 1997; Brauer et al., 2003; Jerrett et al., 2005; Bell, 2006;
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Hochadel et al., 2006; Liao et al., 2006; Ross et al., 2006; Sahsuvaroglu et
al., 2006; Henderson et al., 2007; Jerrett et al., 2007; Moore et al., 2007;
Aguilera et al., 2008). Selection of spatial covariates at appropriate
distances of influence (e.g., distance to road, industrial land use, etc.) is
important for determining final model performance. To date no
systematic approach has been identified on selection of those distances
(i.e., circular areas or buffers) of influence for exposure analysis.
Typically less than 10 circular buffer distances considered having high
correlations with the dependent variable are chosen for a variable
(Henderson et al., 2007; Aguilera et al., 2008). Because of the differences
in topography, meteorology, land use, traffic and population composi-
tion of one urban area to another, the buffer distances suitable for one
urban area might not be the best choice for another. In addition, the
optimized distance of the highest correlation of a variable might be
mistakenly selected. The transferability of LUR from one urban area to
another is very limitednot only by the availability of equivalent variables
but also by the buffer distances used (Briggs et al.,1997; Poplawski et al.,
2009; Su et al., in press). Hoek et al. (2008) suggested that differences in
variable selection strategy could play an important role in model
prediction differences between studies. We suggest that a distance
decay curve of correlation should be calculated first on each available
variable to identify the optimized distance of corresponding variable
and a series of distance decay curves applied in the model optimization
process in any given region of research interest.

In selection of a LUR model, current research uses best subsets,
manual forward (Jerrett et al., 2007) or automated stepwise (Aguilera
et al., 2008) selection process based on the limited number of buffers.
Because of limited knowledge of the distance decay of influence of a
variable, a LUR may not be optimized to produce the optimal
prediction result based on substantive understanding of the physical
processes generating the emissions and controlling the transport of
the pollutants in the atmosphere. This paper uses A Distance Decay
REgression Selection Strategy (ADDRESS) to select variables of the
highest correlation (compared to other variables) at optimized buffer
distances through a series of distance decay curves in a multi-step
selection process. As previous land use regression models were
typically calibrated with NO2 (nitrogen dioxide) as a marker for traffic
exposure, this selection process was also demonstrated using NO2

measured in the spring of 2004 in Toronto, Canada as an example.

2. Materials and methods

2.1. Pollution sampling

NO2 was measured for a two-week period during the spring of
2004 using duplicate two-sided Ogawa passive diffusion samplers at
100 locations across Toronto. Sampling locations were determined
using a location-allocation approach outlined in the paper by
Kanaroglou et al. (2005). The outcome of using a location-allocation
model is a sampling network that better captures the inherent
variability in city-wide exposures (Jerrett et al., 2007).

2.2. Model variable and distance decay curve

The LUR model was developed by regressing the NO2 measure-
ments on spatial covariates chosen for the City of Toronto. The main
spatial covariates included five major categories: (1) Tasseled-cap
transformation indices, based on Landsat images that yield measures
of greenness and soil brightness (Crist and Cicone, 1984); (2) land use
characteristics (commercial, industrial, residential, and open); (3)
population density; (4) physical geography such as geographic
coordinates, elevation, distance to coast; and (5) transportation
systems such as highway (including expressway, primary and
secondary highway), major and local road as well as railway lengths,
highway and major road slope gradients, and major road traffic
density. Expressway casement (in ha), representing both road length

and width in the form of polygon, was also included to see if road
length plus width could improve model prediction power.

To assist in selecting spatial covariates for LUR, 30 circular area
distances (buffers) of interval 50 m were created for each sampler,
ranging from 0–50 m, 0–100 m, 0–150 m, and up to 0–1500 m for
traffic related sources, and 60 buffers to a maximum distance of
3000 m for land use, Tasseled-cap transformation and population
density. The correlation of NO2 with the covariates at each buffer
distancewas calculated and the distance decay curves of correlation of
all the covariates were displayed in a single chart. The distance decay
curves provide us an intuitive view of change and trend of correlation
of NO2 with the selected spatial covariates at those buffer distances
and help selection of spatial covariates at buffer distances of the
highest significance. Importantly this method also reduces impact of
collinearity in the selection of model parameters, which has been a
major limitation of the forward selection strategies employed in most
land use regression models.

2.3. ADDRESS and model diagnostics

As traffic related concentrations decay from roadway outwards and
the assumed maximum distance of influence is 1500 m (Jerrett et al.,
2005; Henderson et al., 2007), themaximum buffer distance for traffic
related covariates was set to be 1500 m. Similarly, the land use,
Tasseled-cap transformation and population density variables were
assumed to have an influence up to 3000 m and the maximum buffer
distance was therefore restricted to a maximum distance of 3000 m.
ADDRESS is illustrated in Fig. 1 as follows: first, the correlations of the
measured NO2 with all the spatial covariates were calculated at all the
30 or 60 buffer distances and displayed in a series of distance decay
curves; second, a spatial covariate with the highest correlation
(compared to other variables) at an optimized buffer distance was
tested first. The optimized buffer distance was at its highest
correlation on the distance decay curve if the highest correlation
distance was not on a flattened curve. When the highest correlation
distance was on a plateau proportion of the distance decay curve, the
highest slope change distance was chosen as the optimized buffer
distance. Expert judgment was given to choose an optimized buffer
distance. If the chosen optimized buffer distance was significant at the
entry level (p=0.10), the spatial variable was added to themodel, and
the prediction residuals of the bivariate model were calculated for all
the sampling locations; third, the distance decay curves of correlation
of prediction residuals were estimated and the spatial covariate of the
highest significance at an optimized search distance was chosen to be
added into the model. Though similar to the manual forward selection
process where spatial covariates are added one at a time to the model
(e.g., Jerrett et al., 2007; Mavko et al., 2008), we used a series of
distance decay curves to select a spatial covariate at its optimized
buffer distance. If a spatial covariate at its optimized buffer distance is
incorporated into the model, the remaining buffer distances of that
variable cannot be considered for further selection in ADDRESS unless
(a) a correlation between the two buffer distances show no significant
correlation, (b) the two distances are non-overlapping concentric
bands (e.g., 0–50 m and 1000–3000 m), and (c) the buffer distance to
be selected is the optimized distance with a significant correlation to
prediction residuals. To facilitate the visual display of distance decay
curves and to reduce computing power required to run the selection
process, only overlapping distances were calculated first since
selection of two buffer distances of the same variable based on
observation that conditions (a) and (c) are rare. When satisfied at the
same time, condition (b) was then added to further restrict the
selection process. In addition, regardless of how many buffers were
used to identify the spatial distance decay of correlation of a variable,
at most two buffer distances of that variable were allowed to be
selected. Fourth, when a spatial covariate at its optimized search
distance was added into the model, the least significant variable of a
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search distance that did not meet the significance level (p=0.10) for
staying in the model was removed. The selection process continued
until no further spatial covariate of a buffer distance could be added to
the model. Similar to other approaches (e.g., Henderson et al., 2007),
variables were chosen if they had the expected sign based on
correlation with the dependent variable (e.g., traffic density should
be positively associated with NO2 levels).

In model diagnostics, variance inflation factors (VIF) were
examined to identify variables that were collinear and could be
eliminated. To evaluate the independence assumption, we also tested
spatial autocorrelation on the residuals from our final optimized
models using the Moran's I statistic (Bailey and Gatrell, 1995), the first
order contiguity matrix based on Thiessen polygons created from
those 100 measurement sites. Statistical significance was tested using
a permutation test with 999 iterations. Additional model diagnostics
included Cook's distance to examine outliers.

To identify whether ADDRESS was an improvement over the
previously developed techniques given the availability of all the buffer
distance statistics, the manual stepwise selection process typically
applied for land use regression modeling (Briggs et al., 1997;
Sahsuvaroglu et al., 2006; Henderson et al., 2007; Jerrett et al., 2007;
Morgenstern et al., 2007; Aguilera et al., 2008;Mavko et al., 2008) was
used to model NO2 levels using the same data as in this research. This
involved the following steps: (1) identifying the optimized buffer
distance for each variable based on the highest correlation with NO2

levels; (2) running a stepwise selection process using the variables
derived from step (1) and those non-buffer variables (e.g., X and Y
coordinates, distance to coast); and (3) removing variables of changing
coefficient signs and of high collinearity. The performance of the
manual stepwise selection process was compared with ADDRESS. To
illustrate whether ADDRESS could benefit land use regression
modeling even with limited number of buffers, the ADDRESS model
was applied to all the variables used in this research but with buffer
distances limited to those typically used for land use regression
modeling, including buffer distance 50, 100, 200, 300, 500, 750, 1000,

1250 and 1500m for traffic related variables and plus 1750, 2000, 2500
and 3000 m for other variables (e.g., population density and land use
variables). TheADDRESSmodel applied for the limited buffer distances
was compared with the manual stepwise selection result as well as
with the ADDRESS model applied for the full buffer distance statistics
(i.e., 50–1500 m for traffic related variables and 50–3000 m for other
land use variables, all at an interval of 50 m). Software packages used
for ADDRESSmodeling and correspondingmodel diagnostics included
SPSS (SPSS Inc., Chicago, IL), Erdas Imagine 8.5 (ERDAS Inc., Atlanta,
GA) for Tasseled-cap transformation and ArcGIS 9.2 (ESRI, Redlands,
CA) for derivation of spatial covariates. Customized programs were
used to conduct the model selection process in ArcGIS 9.2 and in
Microsoft Office (Excel).

3. Results

The descriptive statistics of NO2 sampling over 100 locations in
Toronto, Canada are listed in Table 1. The NO2 samples had a mean
concentration of 10.15 ppb, with values ranging from 4.92 to 19.31 ppb
and a standard deviation of 3.12 ppb.

3.1. Distance decay curves

The distance decay curves illustrated in Fig. 2a show that X
coordinate has the highest negative correlationwith NO2, and 42.7% of

Table 1
Descriptive statistics of NO2 sampling over 100 locations in Toronto, Canada.a

Minimum Maximum Mean Std. error Std. dev

4.92 19.31 10.15 0.31 3.12

1 quartile Median 3 quartile IQR Full range

7.9 10.12 11.43 3.53 14.39

IQR: Inter-quartile range.
a NO2 measurement unit: ppb.

Fig. 1. Concept of a distance decay regression selection strategy based on NO2 concentrations.
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the model variance could be explained by this variable, which is
consistent with earlier studies in Toronto (Jerrett et al. 2007). NO2

levels decreased from west to east were probably because of the
decreasing highway density and industrial emissions from west to
east. Vegetation greenness and open land use also have high
correlations with NO2 levels, with open land use a steady increase
to the maximum buffer distance of 3000 m and greenness a slow
increase to reach a peak at buffer distance 1300 m before a slow drop.
Through the distance decay curves, we can see that open space does
not necessarily represent places with vegetation. When the buffer
distance is less than 250 m, the distance decay curve of open space
even has positive correlationswith NO2 levels. The positive correlation
demonstrates that near road infrastructures (e.g., parks) and possibly
near road parking spaces were classified as open space, which
contribute to the higher levels of NO2. The distance decay curves in

Fig. 2a show that in most cases, greenness has a higher prediction
power than open space; this also demonstrates that open space has
the mixed effect of green space (reduced emissions) and impervious
surface (increased emissions). The distance decay curve for express-
way demonstrates that correlations go up for the first 300 m. When
the distance goes beyond 400 m, there is a sharp drop of correlation
and it flattens at buffer distance 500 m. This affirms previous
assumption that influence from traffic decreased significantly for the
first 300–500 m (Henderson et al., 2007; Jerrett et al., 2007;
Beckerman et al. 2008). By contrast, the influence of major roads
drops to its lowest level when the distance is 200 m; however, the
curve goes up again and flattens at buffer distance 700 m, possibly
indicating two scales of influence—near source and urban background
levels representing larger-area traffic density. With the assistance of
distance decay curves, we could identify the distance of influence of

Fig. 2. Distance decay curves of correlation between spatial covariates and the measured (panel a) or predicted residuals of (panels b–f) NO2 concentrations.
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various land uses and transportation sources to aid the model
selection.

3.2. ADDRESS implementation

The NO2 measurements were transformed with the natural
logarithm to reduce heteroskedasticity. Using the highest correla-
tion coefficient from the distance decay curves of Fig. 2a, X
coordinate was first used to build a bivariate model. The prediction
residuals of the bivariate model were calculated and used to create a
series of spatial covariate distance decay curves at a buffer distance
of 50–3000 m. The distance decay curves of residuals in Fig. 2b show
that 24 h traffic from major roads has the highest correlation

compared to other variables and buffer distance 1500 m has the
highest correlation on the traffic distance decay curve; however,
because the 1500 m buffer is on a flattened curve, the highest slope
change buffer distance before the plateau at buffer distance 650 m
was chosen and added to the bivariate model to predict NO2 levels.
The prediction residuals from the above two variables were
calculated and the distance decay curves of correlation with all
the spatial covariates are illustrated in Fig. 2c. Fig. 2c shows that
after incorporating both X coordinate and 24 h traffic into the
prediction model, expressway casement has the highest correlation
with the model residuals for an optimized buffer distance of 400 m.
Similarly, because the flattened curve for buffer distance was greater
than 400 m, the highest correlation at buffer distance 1500 m was

Fig. 2 (continued).

3894 J.G. Su et al. / Science of the Total Environment 407 (2009) 3890–3898



Author's personal copy

not selected. Instead, expressway casement at buffer distance 400 m
was added to the prediction model. The X coordinate, 24 h traffic
and expressway casement were found to explain 64.1% of the model
variance. The distance decay curves of correlation for the remaining
residuals (Fig. 2d) show that the influence of the open land use has
the highest correlation at the optimized buffer distance of 1400 m.
Even though residential land use was found to have similar
correlations with open land use, residential land use was not
chosen as a model predictor because the coefficients changed from
negative (Fig. 2a) to positive (Fig. 2d). Residential land use has been
linked with lower traffic volume and lower NO2 levels in previous
research (Jerrett et al., 2005; Henderson et al., 2007). The model
with the addition of open land use explained 68.9% of the variance
and all the four variables were significant (pb0.05). The prediction

residual distance decay curves (Fig. 2e) from the above four
predictors show that population density has the highest correlation
at the optimized buffer distance 150 m. After adding population
density at buffer distance 150 m into the model, the LUR model
explained 70.4% of the variance. Similarly, major road at buffer
distance 50 m, slope gradient of highway and major road at distance
1400 m, railway network at distance 1200 m, distance to shoreline
and population density at distance 1350 m were added to the
prediction model based on the corresponding highest correlations
and optimized buffer distances with the prediction residuals.
However, population density at 150 m was found not significant
and was therefore removed from the model. ADDRESS created a LUR
model with X coordinate (m), traffic 24 h (650 m), expressway
casement (400 m), open land use (1400 m), railway (1200 m),

Fig. 2 (continued).

3895J.G. Su et al. / Science of the Total Environment 407 (2009) 3890–3898



Author's personal copy

major road (50 m), distance to coast (m), population density
(1350 m) and slope gradient (1400 m) as predictors and the model
explained 79.4% of the variance. The distance decay curves derived

from the remaining prediction residuals in Fig. 2f show that all the
correlation coefficients are less than 0.15 for those variables with
correct signs of correlation and no significant variables and

Fig. 3. Observed mean NO2 on predicted value.

Table 2
Optimized landusepredictionmodels fromADDRESSusing the full buffer distances (A), themanual stepwise selectionprocess (B) and fromADDRESSwith limitedbuffer distances (C).

Modeling
technique

Model variable Unstandardized coefficients t Significance
level

Collinearity statistics R2

B Std. error Tolerance VIF

A Intercept 12.212744 1.271 9.608 0.000 0.794
X coordinate (m) −0.000017 0.000 −8.433 0.000 0.767 1.304
Traffic 24 h (650 m) 0.000067 0.000 2.837 0.006 0.680 1.471
Expressway casement (400 m) 0.047685 0.008 6.339 0.000 0.809 1.235
Open land use (1400 m) −0.000710 0.000 −3.075 0.003 0.684 1.461
Railway (1200 m) 0.000023 0.000 3.329 0.001 0.781 1.281
Major road (50 m) 0.001049 0.000 3.305 0.001 0.794 1.259
Slope (1400 m) 0.048814 0.013 3.685 0.000 0.764 1.310
Population density (1350 m) 0.002842 0.001 3.545 0.001 0.518 1.932
Distance to coast (m) 0.000018 0.000 4.091 0.000 0.572 1.749

B Intercept 14.295949 1.302 10.982 0.000 0.710
X coordinate (m) −0.000020 0.000 −9.702 0.000 0.956 1.046
Expressway casement (350 m) 0.061059 0.010 5.896 0.000 0.828 1.208
Population density (3000 m) 0.004671 0.001 3.944 0.000 0.656 1.525
Major road (1200 m) 0.000012 0.000 2.659 0.009 0.684 1.462
Slope (1400 m) 0.032969 0.014 2.311 0.023 0.888 1.126

C Intercept 12.227392 1.291 9.474 0.000 0.789
X coordinate (m) −0.000017 0.000 −8.300 0.000 0.761 1.314
Traffic 24 h (500 m) 0.000109 0.000 2.560 0.012 0.687 1.455
Expressway casement (500 m) 0.037914 0.006 6.630 0.000 0.799 1.251
Open land use (1500 m) −0.000626 0.000 −3.019 0.003 0.648 1.542
Railway (1500 m) 0.000017 0.000 3.222 0.002 0.662 1.510
Major road (50 m) 0.001033 0.000 3.212 0.002 0.792 1.263
Slope (1500 m) 0.042576 0.014 3.030 0.003 0.733 1.365
Population density (1500 m) 0.002868 0.001 3.248 0.002 0.490 2.040
Distance to coast (m) 0.000017 0.000 3.928 0.000 0.557 1.794

A: modeling process using ADDRESS with the buffer distances ranging from 0–50m, 0–100m, 0–150m, and up to 0–1500m for traffic related sources (30 circular buffers), and up to
a maximum distance of 3000 m for land use, Tasseled-cap transformation and population density (60 circular buffers); B: a manual stepwise selection process with all the spatial
covariates, C: a modeling process using ADDRESS but with limited buffer distances, including 50, 100, 200, 300, 500, 750, 1000, 1250 and 1500 m for traffic related variables and plus
1750, 2000, 2500 and 3000 m for other variables (e.g., population density and land use variables.
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optimized buffer distances could be further added to the model. The
final prediction model is listed in Table 2A and Fig. 3 (Fig. converted
to natural unit: ppb).

Each individual variable has a significant t score and acceptable
multicollinearity, as demonstrated by the average variance inflation
factors (VIF) in Table 2A. All of the coefficients have the expected sign.
Examination of Cook's distance (maximum=0.103) and prediction
model in Fig. 3 confirmed the absence of significant outliers.
Additionally, Moran's I tests (I=0.063 and p=0.13) show that the
spatial autocorrelation of residuals is insignificant for the model. This
indicates that themodel developed does not violate the independence
assumption and it included fixed covariates to account for
autocorrelation.

After applying the manual selection process to all the available 17
variables with corresponding optimized buffer distances and the four
non-buffer variables, and after removing high collinearity and
inconsistent coefficient variables, the LUR model from the manual
stepwise selection process explains 71.0% of the model variance
(Table 2B). This result is consistent with previous modeling results
from the same area (Jerrett et al., 2007; Finkelstein and Jerrett, 2007).
By contrast, ADDRESS has a higher prediction power (R2=0.794) than
the manual stepwise selection process. We see a reduction of the
mean square error and root mean square error by 27.6% and 25.0%,
respectively, from ADDRESS compared to the manual stepwise
selection technique. When ADDRESS was applied to the same 17
buffer variables and the four non-buffer variables, but with nine traffic
related buffers and 13 land use and other variable buffers, the model
has a prediction power of 0.789 (R2 in Table 2C). However, the VIF for
population density is greater than 2.0. After removing population
density variable, the prediction power (variance explained) is 76.4%.
The slightly lower prediction power is because the limited buffer
ADDRESS model tended to simplify the distance decay curves and
possibly remove some peak values. However, the limited buffer
ADDRESS model is seen as a better model than the manual stepwise
regression model in prediction of NO2 levels.

4. Summary and conclusions

We developed a systematic method for selecting variables in a LUR
model by adding spatial covariates one at a time using distance decay
selection strategy. Rather than seeking transfer of a LUR model from
one urban area to another, ADDRESS applies a full spectrum of
correlation coefficients and a series of distance decay curves to select
spatial covariates at optimized buffer distances for the modeling
process. Each time, a variable of the highest correlation with NO2

levels or prediction residuals at an optimized buffer distance,
identified using distance decay curves, was added to the prediction
model. The selection process ensures the best optimized model to be
chosen using available spatial variables.

Most of the manual stepwise selection process selected buffer
distances of the highest correlations with pollutant levels at the first
step and then used those distances to conduct an optimized stepwise
regression process. Because of the collinearity, not all the variables at
the initial optimized distances held in the final model, so we saw a
decreased prediction of power (R2=0.710) to our ADDRESS model
(R2=0.794). Jerrett et al. (2007) and Mavko et al. (2008) applied a
manual forward screening selection strategy based on the highest t
scores and correlation coefficients r from the regression residuals,
respectively; however, those selection processes were more time
consuming and only the highest correlation buffer distance was
chosen each time. By contrast, ADDRESS selects the highest correla-
tion variable at an optimized buffer distance by visualizing the
distance decay curves of all the available variables. The optimized
buffer distance of the chosen variable does not necessarily have the
highest correlation on its distance decay curve and it might be
selected based on the highest slope change if the highest correlation

buffer distance is seen as a flattened continuation of the curve. Expert
judgment is required to select the highest correlation variable and
corresponding optimized buffer distance to identify the maximum
distance of influence of a factor during each selection process. Expert
judgment is also required to identify the directional change of the
curves. If, for example, the greenness to be added to the model is
positively correlated with prediction residuals, the greenness variable
should not be added to the model even though it has, among the
remaining spatial covariates, the highest correlation. The change of
direction of correlation for a variable (Fig. 2) during the modeling
process is mainly because of the collinearity between variables
already chosen and the variable to be added.

By contrast, the ADDRESS model applied to the limited buffer
distances produced very similar results to the full ADDRESS model.
This was because the variables selected and distances used were quite
similar to the full ADDRESSmodel. As most of the LURmodels had less
than 10 buffer distances, less than the 15 limited buffer distances used
in this research, this makes a transparent identification of the
maximum distance of influence of a factor very difficult. With limited
buffer distances, peek distance of influence might be flattened and the
overall distance decay patternmight be distorted. This is similar to the
modified area unit problem: when an analysis changes from a fine
scale to a coarse resolution, the prediction accuracy decreases for the
analysis and error increases accordingly.

The approach developed here could be used as a guideline for
conducting LUR analysis in a systematic and transparent way leading
to improved pollution predictions for planning and epidemiological
studies. Using this approach also has the benefit of increasing
understanding of the inherent scale of correlation between measured
pollutants and adjacent land use and traffic variables. Because of the
differences in topography, meteorology, land use, traffic and popula-
tion composition of one urban area compared to another, the
optimized distance of the same influential factor (e.g., traffic) might
differ from one urban area to another. To avoid subjective selection of
buffer distances, the buffer distance decay curves could be used to
identify such optimized distances of influence because each distance
decay curve is an objective representation of spatial distance decay
function of a source of pollution as long as corresponding measure-
ments used to construct such a curve are scientifically sound. Such
information ensures objective face validity of the selected variables
and more importantly can be interpreted in epidemiological studies
attempting to understand associations between fine-scale variations
in pollution and health outcomes. The ADDRESS approach may
therefore enhance understanding of relationships between pollutant
levels and land use variables for planning purposes and improve the
interpretation of epidemiologic results.
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